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Let f: [J;l f-+ iC be a continuous, 2n-periodic function and for each n E N let
tn(f;·) denote the trigonometric polynomial of degree ~n interpolating f in the
points 2kn/(2n+l) (k=O, fl, ..., fn). It was shown by J. Marcinkiewicz that
limn~oc gn If(O)-tn(f; OW dO=O for every p>O. We consider Lagrange inter­
polation of non-periodic functions by entire functions of exponential type r > 0 in
the points kn/r (k=O, fl, f2, ... ) and obtain a result analogous to that of
Marcinkiewicz. &.' 1992 Academic Press, Inc.

1. INTRODUCTION

For each n EN let

(J '= 2kn
n,k' 2n + 1 (k=O, ±1, ..., ±n)

and denote by tn(f; . ) the trigonometric interpolatory polynomial of degree
not exceeding n with tn(f; (In,k) = !((In,k)' It was shown by Marcinkiewicz
[10J that if f: ~ -> C is a continuous, 2n-periodic function, then for every
p>O

(1)
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The interest of this result lies in the fact that lim SUPn ~ Xi Itn (f; {1) I=:x; for
every e if the continuous and 2n-periodic function 1 is suitably chosen (see
[7,11]).

We consider Lagrange interpolation of non-periodic functions by entire
functions of exponential type r > 0 in the points

kn
X rk :=­, r (k=O, ±1, ±2, ".)

and obtain a result analogous to that of Marcinkiewicz. In order to place
our result in perspective we recall that every continuous function I: IR -> C
can be approximated arbitrarily closely on IR by entire functions [4]. It
was shown by Bernstein [1] that if1 is continuous and bounded on IR and
E r is the class of all entire functions of exponential type r bounded on IR
then

Ar(f):= inf sup II(x) - F(xll
FEET XE [ft.

tends to zero as r -> CD if and only if 1 is uniformly continuous. To f we
associate

ex;

Lr(f; z):= L f(Xr,k) gr,dz)
k~ -J:)

where for k = 0, ±1, ±2, ...

(2 )

{

sin ~(~- X r,k)

( )
._ r(", x r•k )

gr,k Z .-

1

(3 )

and investigate if it converges tof(in one norm or the other) as r -> cx,. We
are able to show that for every p> 1

if for some b > 0

as r -> ,x; (4)

(XEIR). (5)

We wish to point out that SUPXEIR: I/(x)-Lr(f;x)1 may not tend to
zero as r -> CIJ, if f satisfies (5). Indeed, if X denotes the Banach space of
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all continuous functions I: ~ ~ iC which vanish outside [0, 1] then
I ~ Lr(f; .) defines a bounded linear transformation Ar from X to the
normed linear space Y of all continuous functions cp on [-1, 1] with
Ilcpll :=max_1";;n;;J Icp(x)l. Using [Tin] to denote the integral part of Tin
we see that for all large T

i.e., sUPr IIArl1 = 00. Hence by the Banach-Steinhaus theorem [13, p.98]
there exists a function 1* E X and so one satisfying (5) such that

max 1/*(x)-LAI*;x)j
-l~x~l

does not remain bounded as T ~ CIJ. This idea is essentially contained in [6,
pp. 211-212]; there is a slight difference nevertheless.

DEFINITION 1. Given p> 1, we denote by lJP(J) the set of all
measurable functions I: ~ ~ iC satisfying (5) for some J > 0 and by lJP the
union U6> 0 lJP(J). Clearly lJP c U( ~).

If IE lJP(J) then IE lJP( y) for every y < J. So we may and indeed will
assume 0 < J < I-lip. It is clear that if IE lJP, then

(6)

DEFINITION 2. We denote by 91 the set of all functions I: ~ ~ iC which
are Riemann integrable on every finite interval.

With this we are ready to state our analogue of Marcinkiewicz's result
mentioned above.

THEOREM 1. Let p> 1. Then (4) holds ifI E lJP n 91.

Theorem 1 is related to the well-known sampling theorem which plays
an important role in communication, control theory, and data processing.
In the language of electrical engineers the difference 1- Lr(f; .) is called
the aliasing error and a function IE C( ~) with compact support is referred
to as a duration limited signal (for these and other terms used by them in
this connection see [3] and some of the papers quoted therein). Since a
duration limited signal I trivially satisfies condition (5), Theorem 1 applies
and so the following corollary holds.
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17\
\' ,

COROLLARY 1. For a duration limited Riemann integrable (finite energy)
signal the L 2 norm of aliasing error can he made arbitrarily small.

For a uniform bound of the aliasing error additional assumptions are
needed and are usually stated as conditions on the spectrum.

2. AUXILIARY RESULTS AND PREPARATORY LEMMAS

The entire functions g '.k introduced in (3) are of exponential type rand
belong to U(iR) for every p> 1. In particular, they belong to the class E'
and further

Now we collect some known facts from the theory of entire functions of
exponential type and prove some preliminary results.

LEMMA 1 [12 or 2, Theorem 6.7.1]. fr g is an enitre function of
exponential type T and SO': x 1g(x)1 P dx < eN, p> O. then

(J~x Ig(x+(VWdXfP ::::;e'!'1 (J~x Ig(XWdXYP.

Moreover, g(x) -;. 0 as x -;. ± ,x'.

This is analogous to the well-known fact that if fE E', then

sup If(x + iy)1 ::::; e'I'1 sup If(xll·
-,x·<x-<oc -cc<_...-:<x

LEMMA 2 [12 or 2, Theorem 6.7.15]. Under the conditions of Lernma 1

IS)

where A p depends on p only.

The ne'xt lemma contains some useful information about the function
L,(f;·) associated with anfE lJP.

LEMMA 3. Let p> 1. If fE lJP(c5) then (i) L,(f; .) E E' and Iii) L,(f;·) E

lJP(}') for each }' E (0, c5).

Proof (i) For Z E1[, (E I[ let
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If Z = x + iy is fixed, then as a function of C h,(z,O is entire and of
exponential type T belonging to U (IR) for all q > 1. Hence if q> 1, then by
Lemma 1

which in conjunction with Lemma 2 gives

(

':IV I (kn)/q)l/q (1 fYJ /sin ~Iq )l/q" h ~ - ~ A - -- di" e,lylL.. r 4, ~ q y ~

k=-oc> r n -:xl <;
(9)

This inequality allows us to conclude that if q=p/(p-1) then for N I ,

N 2 E7l.., N l <N2,

Hence, in view of (6), the series L:t~ -oc f(kn/r)h,(z, kn/r) converges
uniformly on all compact subsets of C and so its sum, which is L,(f; z)
(because h,(z, kn/r)=g"k(Z)), defines an entire function. Further

(

00 I (k )/P)I/P (1 oc /. ~Iq )l/q
IL,(f; z)1 ~ k~~OC f r

n
Aq ; too Sl~ d~ e,lyl (10)

which implies that L,(f; . ) is of exponential type r and is bounded on the
real axis.

(ii) Let XE [jn/r, U+ l)n/r), where jEll.. Since Ig"k(X)1 ~ 1 for
x E IR we readily obtain

2
Ig"k(x)1 ~ Ii-kl + 1 for k = j, j + 1.

Now note that Ix - x"kl is bounded below by (j - k)n/r if k ~j - 1 and by
(k-j-1)n/r if k~j+2. As such, Ig"k(X)/ ~2/(/j-kl + 1) also for k#j,
j + 1, i.e.,

for all k. (11 )
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By assumption there exists a constant C1 such that If(x)1 <
CI!(lx! + l)lp+~ for all XER Hence for large positive x

In order to estimate the two sums on the right we break them into two
parts each, thus obtaining four sums. In the first k varies from 1 to U/2],
in the second from [J/2] + 1 to j, in the third from j + 1 to 2j - 1, and in
the fourth from 2j to eN. We then readily see that for some constant C1

Hence the desired result holds for positive x. But then it must also hold for
negative x.

Lemma 3 helps us to prove in particular

LEMMA 4. The transformation f ---+ L.eU; . ) reproduces entire functions of
exponential type r belonging to tjP.

Proof If cp(z):=LT(f;z)-f(z) then ljJ(z):=cp(nz/r) is an entire
function which, in view of (10), satisfies

Since ljJ(z)=O for z=O, ±1, ±2, ... we can use a result of P61ya ~2,

Corollary 9.4.2] to conclude that ljJ( z) =c sin nz. But ljJ(x) ---+ 0 as x ---+ ± XJ

since f and LAf; .) belong to tjP; as such, the constant c must be zero.
Hence ljJ(z) =°which implies LT(f; z) =f(z).

Given f: IR ---+ C and r > 0, consider the integral

1 .cr. sin T(:: - i)
ST(f;Z):=-j f(r) _ dt

IT -CD ~-t

which certainly exists if fE U(IR) for some p> 1. For real z we may also
write

1 " x sin It
ST(f; z) = - J f(z + t) -,- dr.

IT -CD '
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The function S,(f;·) has many interesting properties. For example, if
fE U(IR) for some p> 1 then S,(f; z) is an entire function of exponential
type T and IIS,(f; .) -flip --+ 0 as r --+ CfJ. Lemmas 5-9 contain facts about
S,(f; .) which we need for the proof of our theorem on the U convergence
of L,(f; . ).

From Holder's inequality follows

LEMMA 5. If fE U(IR) for some p> 1, then

(12)

where Kp depends on p only.

Next we prove

LEMMA 6. If fE U(IR) for some p> 1, then S,(f; .) E E'.

Proof The entire function g(z) := (sin T(Z - t))/(z - t) belongs to U(IR)
for every q> 1 and so for q = p/(p - 1). Since it is also of exponential type
T, Lemma 1 implies

(f 00 ) I/q ( . Xl ) l/q
-00 Ig(x+iyWdx :::;e,lyl L

oo
Ig(xWdx

and therefore

IS,(f; x+ iY)I:::;~ (f~x If(tW dtY/P (f~Xl Ig(xW dxr,q e,lyl

= 0 (e,lyl.

This shows that S,(f; . ) is of exponential type r; that it is entire is obvious.

LEMMA 7. If fE iJP then S,(f; .) E iJP.

Proof Throughout this proof C will denote a positive constant not
necessarily the same at each occurrance. We assume, as we may, that
fE iJP(2e), where e < (p - 1)/2p 2. Let x be large and positive. In order to
estimate S,(f; x) we express it as the sum of three integrals,

(f -2x f-x12 foo ) 1 sin rt
S,(f;x)= -00 + -2x + -x/2 ;f(x+t)-t- dt =:11+12+ 13'

If tE(-Xl, -2x] then t<x+t<t/2 and so If(x+t)1 <C/(Itl +2)I/p+2c.
This gives

(13 )
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The assumption on I: implies that PI :=p_ p 2S > 1. So if ql :=PI.'(PI-lj
then by Holder's inequality

1121~ ~ (i-X2
If(x + t)[P1 dt)1 PI ( r-"21 Sin, rt\ql dtyql

IT '- 2x \, - 2x I • I /

< C U:-: (Ix _ ul +11)0 P +2qp, durt'! U:: r- ql dt Ilq,

Again by our assumption on I:

(1) 0 ,p+ 21: PI = 1 + pe - 2p-1:" > 1 + e

and so

c c
112 1 < -I- < --'----11 + -'X PI X I' c.

Finally, with x + t = u,

J
'Cf; 1 Isin r(u-x)1

11.,1 < C . . du
" x I 2(u+l)I I P H(u+l)'iu-xl

c fc£' Isin r(u - x)!
< du

(X+2)l p
H x2 lu-xl lH

_ C (J,X-l fX r x + 1 ION \ Isinr(u-x)[ .
-. . 1:1' + , + + I + 1 I + , dol{-\ + 2) \ x2 x - I ' x ' x + I) !u - x I

C
<-1'-'

X· P+'

114)

(15)

From (13)-(15) it follows that ISTU;x)1 < C/lxl lpH for large and positive
x. Due to obvious summetry, the same estimate must also hold as
x ---+ - w. In particular STU; .) E tV

Lemma 4, in conjunction with Lemmas 6 and 7, gives

LEMMA 8. If fE ~p then [T(STU;,)) = SrU; .).

We also need the following

LEMMA 9. Let fE U(IR) for some P> 1. Then

lim rex:; ISTU; x) -f(xW dx = O.
r -+ J::' " - X

(16 i
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Proof We start by proving (16) for the characteristic function X of the
interval [0, 1]. For this we need the easily verifiable facts that

IJ
l' sin I din 2

- I :(-+-
o r 2 n

for all T and that

. JT sin r n
hm -dl=-.
T~ ex 0 r 2

Simple calculation gives

1 fTX sin I 1 fT(1 - x) sin t
ST(X;X)=- -dl+- -dl.

no r no I

From (18) it follows that for every b > 0 there exists ToU)) such that

\
lf

T
Sinl 11 b- -dl-- <-

reo I 2 2

(17)

(18)

if T> To(b). If '7 is a fixed number in (0, !) then for r> OIl]) To(b) both rx
and r(l- x) are larger than To(b) and so

1

1fTX sinr 11 11 j.Tfl-X) sin I 1/IST(X;x)-II:( - -dr-- + - -dl-- <b
n 0 I 2 n·o I 2

if XE [I], 1-'7]. Similarly, if x~ 1 +" or if X:( -I] then for r> (1/1]) To(Ci)

j
lfTlxlsint 11 11 j.T(1-X l sin I 11ISAx; x)l:( - -dt-- + - -dl-- <b.
no t 2 no r 2

Thus if E'I:= {x: Ixl <I] or lx-II <I]} then

for all XE IR\E~ (19)

if r> (l/l])To(b).
For x~A > 1

1

1 J'TX sintilIS,h;x)-x(x)1 = ISAx;x)1 = - -dr <--
re T(X-I) t n(x-l)

and so for given G > 0

(20)
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Similarly

311

(21 )

Now let A be any fixed arbitrary number ~max{l +1), Aa{c)}. Then

Next we write

(22)

From (17) it follows that IST(x;x)I::(1+4/n 2 for all XE~ and all r>O.
Consequently

(23i

We choose an 11< (c/16)(n 2/(4+2n 2))P and use (19) to conclude that

(24)

if b < (1::/8A)I/p and r> (1/11) Ta(o). The estimates (22)-(24) together show
that (16) holds for the characteristic function of [0, 1]. The result easily
extends to the characteristic function of any finite interval and indeed to

any step function with compact support.
Given a function f: IR -+ IR belonging to LP( ~) for some p > 1 and an

arbitrary constant 1:: 1 > 0 we can find a step function Q with compact
support such that

Further, there exists '1(1:: 1»0 such that for all ,>t 1(ct!
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Hence, in view of Lemma 5,

U~X) IS,(f; x) - f(xW dxr'p
~ (Kp + 1) (J~oc If(x)-Q(xW dX) lip

+ (J~oc IS,(Q; x) - Q(xW dX) lip

< (Kp + 2)8 1

if r > r 1(8 1). Since 8 1 is arbitrary this proves Lemma 9 for functions which
assume only real values. But this is a restriction which can obviously be
dropped.

Remark. Lemma 9 seems to us to be a result of independent interest.

The next lemma plays a crucial role in our argument.

LEMMA 10. Let p> 1. If f is an entire function of exponential type r
belonging to I'YP, then

(I X )1/P (n oc I (kn)IP)L'P
-Y:) If(xW dx ~ Bp ~ k~~X f ~ (25)

where Bp depends on p only.

We deduce it from the following result of Marcinkiewicz [10,
Theorem 10], using an approximation method developped by B. M.
Lewitan [9], N. 1. Akhiezer and V. A. Marchenko (see [14, Sect. 4.10.3]),
and L. Hormander [8].

LEMMA 11. If t N is a trigonometric polynomial of degree at most Nand
1<p < 00, then

where C; depends on p only.

It is desirable to recall certain facts from [8]. If cp(x) := ((sin nx)/nx)2
then for fEE' and h > 0 the function

(26)
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is continuous and periodic with period 1/11. Its Fourier coefficients

~ 1:'2h

c,,(h) :=h I f,,(x)e- 1rri
""x dx

0.1_1:'2h

vanish if Ivl > [r/2nh] + 1, i.e.,f,,(x) is of the form

3l?

!V

.t;,(x) = L a,.e 1rril'''x,
r= -!V

(

r". --, \

1'1 := ! -'- 1+ 1 I.
L2nhj /

Besides, f/;(z)--+f(::) as h--+O. the convergence being uniform on al;
compact subsets of the complex plane.

We shall also need the following property off" proved in [5, Lemma 3].

LEMMA 12. If fE ~P(o), p> 1, then there exists a constant C such thai

1f,,(xW < C Ixl- 1
-

pb 1
for 0< I.yl <::;-.

Lh

Proof of Lemma 10. Let h be of form rj'2n(N - 1) where N - t E i\~.

Then f,,(x;'2nh) is a trigonometric polynomial of degree at most N and so
by Lemma 11

I.e.,

Given <; > 0 there exists L > 0 such that

Since f,,(x) --+f(x) uniformly on [ - L, L] as h --+ 0 we can find ho > 0 with

~L ~L

J-L If(x)1 P dx < j-L If,,(x)1 P dx + <; for O<h<h,.
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Hence for 0 < h < min {h" 1/2L} we have

f:C I/(xW dx < (2" 1/,,(xW dx + 2e
- Of) ~ 1/2"

(28)

In view of Lemma 12, there exist an integer n2 = n2 (e) and h~ > 0 such that

I 11,,( vn: )IP <2C(r+3n:h)I+P6 f: V- 1 -
p6

1l2<lvl';;N r+3n:h n: V=1I2+ 1
2C (r + 3n:h)1 +p6 _<_ n- piJ

pfJ n: 2

2C (r + 3n:h)1 +p6 _<_ n- piJ

piJ n: 2

er
<-C'n: P

if O<h<h~. (29)

Further, since f, I" are continuous and lim" ~ 0/" =I uniformly on compact
subsets it follows from

IIVI~IIJ/J" C:~nh)IP- /J C:)IP}I
~ IVI~1l2 {k" C:~nh)IP-IIC:~n:h)IP

+ /JC:~nh)IP - jJ C:)/P}
that

I ( vn )jP I (vn:)IP 2erI I, < I I - +-
Ivl';;1l2 l r+3n:h Iv l';;112 r n:C~

(30)

if h is sufficiently small. Inequality (25) is an obvious consequence of (28),
(29), and (30).
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Finally, we need

LEMMA 13. Let p> 1. IfIE iY P n 91, then

Proof Let

C
I/(x)1 < (Ixl + 1)IIP+J

for all x E iR. (31)

Given e>O we choose Xc in [(6CP/6pe)lbp
, co) large enough to have

If i = i( 0") is the largest integer such that infO" ::::; Xc, then

n ex; I (kn)I P
7[ x I(kn\ I +bp- L I - < CP - L 1i - J

0" k~J+2 0" (J k~J+2 ! ,(J,

CP( (J \bp

=6p (J+l)n)

e
<­

6

n -J-
2

1 (kn\IP e- L I -I <-.
O"k~_x O") 6

(32)

(33)

The property (31), the assumption on the size of Xc, and the fact ~hat

III E 91 together imply

for all large (J. The desired result follows from (32 H 35 ).

(35)
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3. PROOF OF THEOREM 1

Let (J > 0 and consider I,} ==1- S"U; .). If T ~ (J then by Lemma 8

whence

By Lemma 7, 1,,* belongs to ~p and by Lemma 3, LrUa*; . )E £! n ~p. So
using Lemma 10 we get

Given G > 0 we can, in view of Lemma 9, choose (J large enough to have

Since 1,,* belongs to 9i too, we can then, by virtue of Lemma 13, find TO ~ (J

such that

(~ I 1
/

,,* (krr) I P) lip <_G
T k~ -00 T 2Bp

for T ~ '0'

Thus III- LrU; .)ll p < G for all large T, i.e., Theorem 1 holds.
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