On the L^{p} Convergence of Lagrange Interpolating Entire Functions of Exponential Type

Q. I. Rahman
Département de Mathématiques et de Statistique, Université de Montréal, Montréal, Québec, Canada H3C 357

AND

P. VÉrtesi*

Mathematical Institute of the Hungarian Academy of Sciences, P.O.B. 127, Budapest, H-1364, Hungary

Communicated by D. S. Lubinsky
Received October 24, 1990; revised April 17, 1991

Let $f: \mathbb{R} \mapsto \mathbb{C}$ be a continuous, 2π-periodic function and for each $n \in \mathbb{N}$ let $t_{n}(f ; \cdot)$ denote the trigonometric polynomial of degree $\leqslant n$ interpolating f in the points $2 k \pi /(2 n+1)(k=0, \pm 1, \ldots, \pm n)$. It was shown by J. Marcinkiewicz that $\lim _{n \rightarrow \infty} \int_{0}^{2 \pi}\left|f(\theta)-t_{n}(f ; \theta)\right|^{p} d \theta=0$ for every $p>0$. We consider Lagrange interpolation of non-periodic functions by entire functions of exponential type $\tau>0$ in the points $k \pi / \tau(k=0, \pm 1, \pm 2, \ldots)$ and obtain a result analogous to that of Marcinkiewicz. © 1992 Academic Press, Inc.

1. Introduction

For each $n \in \mathbb{N}$ let

$$
\theta_{n, k}:=\frac{2 k \pi}{2 n+1} \quad(k=0, \pm 1, \ldots, \pm n)
$$

and denote by $t_{n}(f ; \cdot)$ the trigonometric interpolatory polynomial of degree not exceeding n with $t_{n}\left(f ; \theta_{n, k}\right)=f\left(\theta_{n, k}\right)$. It was shown by Marcinkiewicz [10] that if $f: \mathbb{R} \rightarrow \mathbb{C}$ is a continuous, 2π-periodic function, then for every $p>0$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{2 \pi}\left|f(\theta)-t_{n}(f ; \theta)\right|^{p} d \theta=0 \tag{1}
\end{equation*}
$$

[^0]The interest of this result lies in the fact that $\lim \sup _{n \rightarrow \infty}\left|t_{n}(f ; \theta)\right|=\infty$ for every θ if the continuous and 2π-periodic function f is suitably chosen (see [7, 11]).

We consider Lagrange interpolation of non-periodic functions by entire functions of exponential type $\tau>0$ in the points

$$
x_{\tau, k}:=\frac{k \pi}{\tau} \quad(k=0, \pm 1, \pm 2, \ldots)
$$

and obtain a result analogous to that of Marcinkiewicz. In order to place our result in perspective we recall that every continuous function $f: \mathbb{R} \rightarrow \mathbb{C}$ can be approximated arbitrarily closely on \mathbb{R} by entire functions [4]. It was shown by Bernstein [1] that if f is continuous and bounded on \mathbb{R} and E^{τ} is the class of all entire functions of exponential type τ bounded on \mathbb{R} then

$$
A_{\tau}(f):=\inf _{F \in E^{\tau}} \sup _{x \in \mathbb{R}}|f(x)-F(x)|
$$

tends to zero as $\tau \rightarrow \infty$ if and only if f is uniformly continuous. To f we associate

$$
\begin{equation*}
L_{\tau}(f ; z):=\sum_{k=-\infty}^{\infty} f\left(x_{\tau, k}\right) g_{s, k}(z) \tag{2}
\end{equation*}
$$

where for $k=0, \pm 1, \pm 2, \ldots$

$$
g_{\tau, k}(z):=\left\{\begin{array}{cc}
\frac{\sin \tau\left(z-x_{\tau, k}\right)}{\tau\left(z-x_{\tau, k}\right)} & \text { if } z \neq x_{\tau, k} \tag{3}\\
1 & \text { if } z=x_{\tau, k,}
\end{array}\right.
$$

and investigate if it converges to f (in one norm or the other) as $\tau \rightarrow \infty$. We are able to show that for every $p>1$

$$
\begin{equation*}
\left\|f-L_{\tau}(f ; \cdot)\right\|_{p}:=\left(\int_{-\infty}^{\infty}\left|f(x)-L_{\tau}(f ; x)\right|^{p} d x\right)^{1 / p} \rightarrow 0 \quad \text { as } \quad \tau \rightarrow \infty \tag{4}
\end{equation*}
$$

if for some $\delta>0$

$$
\begin{equation*}
f(x)=O\left(\frac{1}{(|x|+1)^{1 / p+\bar{b}}}\right) \quad(x \in \mathbb{P}) . \tag{5}
\end{equation*}
$$

We wish to point out that $\sup _{x \in \mathbb{R}}\left|f(x)-L_{\tau}(f ; x)\right|$ may not tend to zero as $\tau \rightarrow \infty$, if f satisfies (5). Indeed, if X denotes the Banach space of
all continuous functions $f: \mathbb{R} \rightarrow \mathbb{C}$ which vanish outside $[0,1]$ then $f \rightarrow L_{\tau}(f ; \cdot)$ defines a bounded linear transformation Λ_{τ} from X to the normed linear space Y of all continuous functions φ on $[-1,1]$ with $||\varphi||:=\max _{-1 \leqslant x \leqslant 1}|\varphi(x)|$. Using $[\tau / \pi]$ to denote the integral part of τ / π we see that for all large τ

$$
\left\|A_{\tau}\right\| \geqslant \sum_{k=1}^{[\tau / \pi]}\left|g_{\tau, k}\left(\frac{\pi}{2 \tau}\right)\right|=\frac{2}{\pi} \sum_{k=1}^{[\tau / \pi]} \frac{1}{2 k-1}>\frac{1}{\pi} \log \tau-1,
$$

i.e., $\sup _{\tau}\left\|A_{\tau}\right\|=\infty$. Hence by the Banach-Steinhaus theorem [13, p. 98] there exists a function $f^{*} \in X$ and so one satisfying (5) such that

$$
\max _{-1 \leqslant x \leqslant 1}\left|f^{*}(x)-L_{\tau}\left(f^{*} ; x\right)\right|
$$

does not remain bounded as $\tau \rightarrow \infty$. This idea is essentially contained in [6, pp. 211-212]; there is a slight difference nevertheless.

Definition 1. Given $p>1$, we denote by $\mathfrak{F}^{p}(\delta)$ the set of all measurable functions $f: \mathbb{R} \rightarrow \mathbb{C}$ satisfying (5) for some $\delta>0$ and by \mathscr{F}^{p} the union $\bigcup_{\delta>0} \mathfrak{F}^{p}(\delta)$. Clearly $\mathfrak{F}^{p} \subset L^{p}(\mathbb{R})$.

If $f \in \mathscr{F}^{p}(\delta)$ then $f \in \mathfrak{F}^{p}(\gamma)$ for every $\gamma<\delta$. So we may and indeed will assume $0<\delta<1-1 / p$. It is clear that if $f \in \mathscr{F}^{p}$, then

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty}\left|f\left(\frac{k \pi}{\tau}\right)\right|^{p}<\infty \tag{6}
\end{equation*}
$$

Definition 2. We denote by \mathfrak{R} the set of all functions $f: \mathbb{R} \rightarrow \mathbb{C}$ which are Riemann integrable on every finite interval.

With this we are ready to state our analogue of Marcinkiewicz's result mentioned above.

Theorem 1. Let $p>1$. Then (4) holds if $f \in \mathfrak{F}^{p} \cap \mathfrak{R}$.

Theorem 1 is related to the well-known sampling theorem which plays an important role in communication, control theory, and data processing. In the language of electrical engineers the difference $f-L_{\tau}(f ; \cdot)$ is called the aliasing error and a function $f \in C(\mathbb{R})$ with compact support is referred to as a duration limited signal (for these and other terms used by them in this connection see [3] and some of the papers quoted therein). Since a duration limited signal f trivially satisfies condition (5), Theorem 1 applies and so the following corollary holds.

Corollary 1. For a duration limited Riemann integrable (finite energy) signal the L^{2} norm of aliasing error can be made arbitrarily small.

For a uniform bound of the aliasing error additional assumptions are needed and are usually stated as conditions on the spectrum.

2. Auxiliary Results and Preparatory Lemmas

The entire functions $g_{\tau, k}$ introduced in (3) are of exponential type τ and belong to $L^{p}(\mathbb{R})$ for every $p>1$. In particular, they belong to the class E^{r} and further

$$
g_{\tau . j}\left(x_{\tau, k}\right)=\delta_{j, k}
$$

Now we collect some known facts from the theory of entire functions of exponential type and prove some preliminary results.

Lemma 1 [12 or 2, Theorem 6.7.1]. If g is an enitre function of exponential type τ and $\int_{-x}^{x_{-}}|g(x)|^{p} d x<\infty, p>0$, then

$$
\begin{equation*}
\left(\int_{-\infty}^{\infty}|g(x+i y)|^{p} d x\right)^{1: p} \leqslant e^{[|p|}\left(\int_{-\infty}^{\infty}|g(x)|^{p} d x\right)^{1 p} \tag{7}
\end{equation*}
$$

Moreover, $g(x) \rightarrow 0$ as $x \rightarrow \pm \infty$.
This is analogous to the well-known fact that if $f \in E^{\tau}$, then

$$
\sup _{-\infty<r<\infty}|f(x+i y)| \leqslant e^{x|y|} \sup _{-\infty<x<x}|f(x)| .
$$

Lemma 2 [12 or 2 , Theorem 6.7.15]. Under the conditions of Lemma 1

$$
\begin{equation*}
\left(\frac{\pi}{\tau} \sum_{k=-\infty}^{\infty}\left|g\left(\frac{k \pi}{\tau}\right)\right|^{p}\right)^{1 p} \leqslant A_{p}\left(\int_{-\infty}^{\infty}|g(x)|^{p} d x\right)^{i p} \tag{8}
\end{equation*}
$$

where A_{p} depends on p only.
The next lemma contains some useful information about the function $L_{\tau}(f ; \cdot)$ associated with an $f \in \mathfrak{F}^{P}$.

Lemma 3. Let $p>1$. If $f \in \mathfrak{F}^{p}(\delta)$ then (i) $L_{\tau}(f ; \cdot) \in E^{\tau}$ and (ii) $L_{\tau}(f ; \cdot) \in$ $\mathcal{F}^{p}(\gamma)$ for each $\gamma \in(0, \delta)$.

Proof. (i) For $z \in \mathbb{C}, \zeta \in \mathbb{C}$ let

$$
h_{\tau}(z, \check{\zeta}):=\frac{\sin \tau(z-\zeta)}{\tau(z-\zeta)} .
$$

If $z=x+i y$ is fixed, then as a function of $\zeta, h_{\tau}(z, \zeta)$ is entire and of exponential type τ belonging to $L^{q}(\mathbb{R})$ for all $q>1$. Hence if $q>1$, then by Lemma 1

$$
\int_{-\infty}^{\infty}\left|h_{\tau}(z, \xi)\right|^{q} d \xi=\int_{-\infty}^{\infty}\left|\frac{\sin \tau(\xi+i y)}{\tau(\xi+i y)}\right|^{q} d \xi \leqslant \frac{1}{\tau} e^{q \tau|, v|} \int_{-\infty}^{\infty}\left|\frac{\sin \xi}{\xi}\right|^{q} d \xi
$$

which in conjunction with Lemma 2 gives

$$
\begin{equation*}
\left(\sum_{k=-\infty}^{\infty}\left|h_{\tau}\left(z, \frac{k \pi}{\tau}\right)\right|^{q}\right)^{1 / q} \leqslant A_{q}\left(\frac{1}{\pi} \int_{-\infty}^{\infty}\left|\frac{\sin \xi}{\xi}\right|^{q} d \xi\right)^{1 / q} e^{\tau|y|} \tag{9}
\end{equation*}
$$

This inequality allows us to conclude that if $q=p /(p-1)$ then for N_{1}, $N_{2} \in \mathbb{Z}, N_{1}<N_{2}$,

$$
\begin{aligned}
& \left|\sum_{k=N_{1}}^{N_{2}} f\left(\frac{k \pi}{\tau}\right) h_{\tau}\left(z, \frac{k \pi}{\tau}\right)\right| \\
& \quad \leqslant\left(\sum_{k=N_{1}}^{N_{2}}\left|f\left(\frac{k \pi}{\tau}\right)\right|^{p}\right)^{1 / p}\left(\sum_{k=-\infty}^{\infty}\left|h_{\tau}\left(z, \frac{k \pi}{\tau}\right)\right|^{q}\right)^{1 / q} \\
& \quad \leqslant\left(\sum_{k=N_{1}}^{N_{2}}\left|f\left(\frac{k \pi}{\tau}\right)\right|^{p}\right)^{1 / p} A_{q}\left(\frac{1}{\pi} \int_{-\infty}^{\infty}\left|\frac{\sin \xi}{\xi}\right|^{q} d \xi\right)^{1 / q} e^{\tau|,|c|} .
\end{aligned}
$$

Hence, in view of (6), the series $\sum_{k=-\infty}^{\infty} f(k \pi / \tau) h_{\tau}(z, k \pi / \tau)$ converges uniformly on all compact subsets of \mathbb{C} and so its sum, which is $L_{\tau}(f ; z)$ (because $h_{\tau}(z, k \pi / \tau)=g_{\tau, k}(z)$), defines an entire function. Further

$$
\begin{equation*}
\left|L_{\tau}(f ; z)\right| \leqslant\left(\sum_{k=-\infty}^{\infty}\left|f\left(\frac{k \pi}{\tau}\right)\right|^{p}\right)^{1 / p} A_{q}\left(\frac{1}{\pi} \int_{-\infty}^{\infty}\left|\frac{\sin \xi}{\xi}\right|^{q} d \zeta\right)^{1 / q} e^{\tau|y|} \tag{10}
\end{equation*}
$$

which implies that $L_{t}(f ; \cdot)$ is of exponential type τ and is bounded on the real axis.
(ii) Let $x \in[j \pi / \tau,(j+1) \pi / \tau)$, where $j \in \mathbb{Z}$. Since $\left|g_{\tau, k}(x)\right| \leqslant 1$ for $x \in \mathbb{R}$ we readily obtain

$$
\left|g_{\tau, k}(x)\right| \leqslant \frac{2}{|j-k|+1} \quad \text { for } \quad k=j, j+1
$$

Now note that $\left|x-x_{\tau, k}\right|$ is bounded below by $(j-k) \pi / \tau$ if $k \leqslant j-1$ and by $(k-j-1) \pi / \tau$ if $k \geqslant j+2$. As such, $\left|g_{\tau, k}(x)\right| \leqslant 2 /(|j-k|+1)$ also for $k \neq j$, $j+1$, i.e.,

$$
\begin{equation*}
\left|g_{\tau, k}(x)\right| \leqslant \frac{2}{|j-k|+1} \quad \text { for all } k \tag{11}
\end{equation*}
$$

By assumption there exists a constant C_{1} such that $|f(x)|<$ $C_{1} /(|x|+1)^{1 / p+\delta}$ for all $x \in \mathbb{R}$. Hence for large positive x

$$
\begin{aligned}
\left|L_{\mathrm{*}}(f ; x)\right|< & 2 C_{1}\left\{\frac{1}{j+1}+2\left(\frac{\tau}{\pi}\right)^{1 \cdot p+\delta}\right. \\
& \left.\times\left(\sum_{k=1}^{j} \frac{1}{(j-k+1) k^{1 p+\delta}}+\sum_{k=i+1}^{\infty} \frac{1}{(k-j+1) k^{1: p+\delta}}\right)\right\} .
\end{aligned}
$$

In order to estimate the two sums on the right we break them into two parts each, thus obtaining four sums. In the first k varies from 1 to [$j / 2]$, in the second from $[j / 2]+1$ to j, in the third from $j+1$ to $2 j-1$, and in the fourth from $2 j$ to \propto. We then readily see that for some constant C_{2}

$$
\left|L_{\mathrm{r}}(f ; x)\right|<C_{2}\left(\frac{1}{j}+\frac{1}{j^{1 / p+\delta}}+\frac{1}{j^{1 \cdot p+\delta}} \log j\right)<C_{2} \frac{3}{j^{1 / p+\delta}} \log j
$$

Hence the desired result holds for positive x. But then it must also hold for negative x.

Lemma 3 helps us to prove in particular
Lemma 4. The transformation $f \rightarrow L_{\tau}(f ; \cdot)$ reproduces entire functions of exponential type τ belonging to \mathfrak{F}^{p}.

Proof. If $\varphi(z):=L_{\tau}(f ; z)-f(z)$ then $\psi(z):=\varphi(\pi z / \tau)$ is an entire function which, in view of (10), satisfies

$$
|\psi(z)|=O\left(e^{\pi i=1}\right), \quad z \in \mathbb{C} .
$$

Since $\psi(z)=0$ for $z=0, \pm 1, \pm 2, \ldots$ we can use a result of Pólya [2, Corollary 9.4.2] to conclude that $\psi(z) \equiv c \sin \pi z$. But $\psi(x) \rightarrow 0$ as $x \rightarrow \pm \infty$ since f and $L_{\tau}(f ; \cdot)$ belong to \mathfrak{F}^{p}; as such, the constant c must be zero. Hence $\psi(z) \equiv 0$ which implies $L_{\tau}(f ; z) \equiv f(z)$.

Given $f: \mathbb{R} \rightarrow \mathbb{C}$ and $\tau>0$, consider the integral

$$
S_{\tau}(f ; z):=\frac{1}{\pi} \int_{-\infty}^{\infty} f(t) \frac{\sin \tau(z-i)}{z-t} d t
$$

which certainly exists if $f \in L^{p}(\mathbb{R})$ for some $p>1$. For real z we may also write

$$
S_{\tau}(f ; z)=\frac{1}{\pi} \int_{-\infty}^{\infty} f(z+t) \frac{\sin \tau t}{t} d t
$$

The function $S_{\tau}(f ; \cdot)$ has many interesting properties. For example, if $f \in L^{p}(\mathbb{R})$ for some $p>1$ then $S_{\tau}(f ; z)$ is an entire function of exponential type τ and $\left|\mid S_{\tau}(f ; \cdot)-f \|_{p} \rightarrow 0\right.$ as $\tau \rightarrow \infty$. Lemmas 5-9 contain facts about $S_{\tau}(f ; \cdot)$ which we need for the proof of our theorem on the L^{p} convergence of $L_{\tau}(f ; \cdot)$.

From Hölder's inequality follows
Lemma 5. If $f \in L^{p}(\mathbb{R})$ for some $p>1$, then

$$
\begin{equation*}
\|\left. S_{\tau}(f ; \cdot)\right|_{p} \leqslant K_{p}| | f| |_{p} \tag{12}
\end{equation*}
$$

where K_{p} depends on p only.
Next we prove

Lemma 6. If $f \in L^{p}(\mathbb{R})$ for some $p>1$, then $S_{\tau}(f ; \cdot) \in E^{\tau}$.
Proof. The entire function $g(z):=(\sin \tau(z-t)) /(z-t)$ belongs to $L^{q}(\mathbb{R})$ for every $q>1$ and so for $q=p /(p-1)$. Since it is also of exponential type τ, Lemma 1 implies

$$
\left(\int_{-\infty}^{\infty}|g(x+i y)|^{q} d x\right)^{1 / q} \leqslant e^{\tau|y|}\left(\int_{-\infty}^{\infty}|g(x)|^{q} d x\right)^{1 / q}
$$

and therefore

$$
\begin{aligned}
\left|S_{\tau}(f ; x+i y)\right| & \leqslant \frac{1}{\pi}\left(\int_{-\infty}^{\infty}|f(t)|^{p} d t\right)^{1 / p}\left(\int_{-\infty}^{\infty}|g(x)|^{q} d x\right)^{1 / q} e^{\tau|y|} \\
& =O\left(e^{\tau|y|}\right.
\end{aligned}
$$

This shows that $S_{\tau}(f ; \cdot)$ is of exponential type τ; that it is entire is obvious.
Lemma 7. If $f \in \mathfrak{F}^{p}$ then $S_{\tau}(f ; \cdot) \in \mathfrak{F}^{p}$.
Proof. Throughout this proof C will denote a positive constant not necessarily the same at each occurrance. We assume, as we may, that $f \in \mathscr{F}^{p}(2 \varepsilon)$, where $\varepsilon<(p-1) / 2 p^{2}$. Let x be large and positive. In order to estimate $S_{\tau}(f ; x)$ we express it as the sum of three integrals,

$$
S_{\tau}(f ; x)=\left(\int_{-\infty}^{-2 x}+\int_{-2 x}^{-x / 2}+\int_{-x / 2}^{\infty}\right) \frac{1}{\pi} f(x+t) \frac{\sin \tau t}{t} d t=: I_{1}+I_{2}+I_{3} .
$$

If $t \in(-\infty,-2 x]$ then $t<x+t<t / 2$ and so $|f(x+t)|<C /(|t|+2)^{1 / p+2 \varepsilon}$. This gives

$$
\begin{equation*}
\left|I_{1}\right|<\int_{2 x}^{\infty} \frac{C}{t^{1 / p+2 \varepsilon+1}} d t<\frac{C}{x^{1 / p+2 \varepsilon}} \tag{13}
\end{equation*}
$$

The assumption on ε implies that $p_{1}:=p-p^{2} \varepsilon>1$. So if $q_{1}:=p_{1}\left(p_{1}-1\right)$ then by Hölder's inequality

$$
\begin{aligned}
\left|I_{2}\right| & \leqslant \frac{1}{\pi}\left(\int_{-2 x}^{-x_{2}}|f(x+t)|^{p_{1}} d t\right)^{1 \rho_{1}}\left(\int_{-2 x}^{-x \cdot 2}\left|\frac{\sin \tau t}{t}\right|^{q_{1}} d t\right)^{1 \cdot q_{1}} \\
& <C\left(\int_{x 2}^{2 x} \frac{1}{(|x-u|+1)^{\left(1 \rho_{p}+2 \varepsilon\right) p_{1}}} d u\right)^{1 \cdot \rho_{1}}\left(\int_{v_{2}}^{2 x} t^{-q_{1}} d t\right)^{1 / q_{1}} .
\end{aligned}
$$

Again by our assumption on ε

$$
\left(\frac{1}{p}+2 \varepsilon\right) p_{1}=1+p \varepsilon-2 p^{2} \varepsilon^{2}>1+\varepsilon
$$

and so

$$
\begin{equation*}
\left|I_{2}\right|<\frac{C}{x^{1 p_{1}}}<\frac{C}{x^{1 / p+\varepsilon}} \tag{14}
\end{equation*}
$$

Finally, with $x+t=u$,

$$
\begin{align*}
\left|I_{3}\right| & <C \int_{x ; 2}^{\infty} \frac{1}{(u+1)^{1: p+\varepsilon}} \frac{|\sin \tau(u-x)|}{(u+1)^{\varepsilon}|u-x|} d u \\
& <\frac{C}{(x+2)^{1 \cdot p+\varepsilon}} \int_{x \cdot 2}^{\infty} \frac{|\sin \tau(u-x)|}{|u-x|^{1+\varepsilon}} d u \\
& =\frac{C}{(x+2)^{1 ; p+\varepsilon}}\left(\int_{x^{\prime} 2}^{x-1}+\int_{x-1}^{x}+\int_{x}^{x+1}+\int_{x+1}^{\infty}\right) \frac{|\sin \tau(u-x)|}{|u-x|^{1+\varepsilon}} d u \\
& <\frac{C}{x^{1 \cdot p+\varepsilon}} . \tag{15}
\end{align*}
$$

From (13)-(15) it follows that $\left|S_{\tau}(f ; x)\right|<C /|x|^{1^{\prime p} p+\varepsilon}$ for large and positive x. Due to obvious summetry, the same estimate must also hold as $x \rightarrow-\infty$. In particular $S_{\tau}(f ; \cdot) \in \mathcal{F}^{P}$.

Lemma 4, in conjunction with Lemmas 6 and 7, gives
Lemma 8. If $f \in \mathbb{F}^{p}$ then $L_{\tau}\left(S_{\tau}(f ; \cdot)\right)=S_{\tau}(f ; \cdot)$.
We also need the following
Lemma 9. Let $f \in L^{p}(\mathbb{R})$ for some $p>1$. Then

$$
\begin{equation*}
\lim _{\tau \rightarrow \infty} \int_{-\infty}^{\infty}\left|S_{\tau}(f ; x)-f(x)\right|^{p} d x=0 \tag{16}
\end{equation*}
$$

Proof. We start by proving (16) for the characteristic function χ of the interval $[0,1]$. For this we need the easily verifiable facts that

$$
\begin{equation*}
\left|\int_{0}^{T} \frac{\sin t}{t} d t\right| \leqslant \frac{\pi}{2}+\frac{2}{\pi} \tag{17}
\end{equation*}
$$

for all T and that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \int_{0}^{T} \frac{\sin t}{t} d t=\frac{\pi}{2} \tag{18}
\end{equation*}
$$

Simple calculation gives

$$
S_{\tau}(\chi ; x)=\frac{1}{\pi} \int_{0}^{\tau x} \frac{\sin t}{t} d t+\frac{1}{\pi} \int_{0}^{\tau(1-x)} \frac{\sin t}{t} d t
$$

From (18) it follows that for every $\delta>0$ there exists $T_{0}(\delta)$ such that

$$
\left|\frac{1}{\pi} \int_{0}^{T} \frac{\sin t}{t} d t-\frac{1}{2}\right|<\frac{\delta}{2}
$$

if $T>T_{0}(\delta)$. If η is a fixed number in $\left(0, \frac{1}{2}\right)$ then for $\tau>(1 / \eta) T_{0}(\delta)$ both τx and $\tau(1-x)$ are larger than $T_{0}(\delta)$ and so

$$
\left|S_{\tau}(\chi ; x)-1\right| \leqslant\left|\frac{1}{\pi} \int_{0}^{\tau x} \frac{\sin t}{t} d t-\frac{1}{2}\right|+\left|\frac{1}{\pi} \int_{0}^{\tau(1-x)} \frac{\sin t}{t} d t-\frac{1}{2}\right|<\delta
$$

if $x \in[\eta, 1-\eta]$. Similarly, if $x \geqslant 1+\eta$ or if $x \leqslant-\eta$ then for $\tau>(1 / \eta) T_{0}(\delta)$

$$
\left|S_{\tau}(\chi ; x)\right| \leqslant\left|\frac{1}{\pi} \int_{0}^{\tau|x|} \frac{\sin t}{t} d t-\frac{1}{2}\right|+\left|\frac{1}{\pi} \int_{0}^{\tau(1-x)} \frac{\sin t}{t} d t-\frac{1}{2}\right|<\delta .
$$

Thus if $E_{\eta}:=\{x:|x|<\eta$ or $|x-1|<\eta\}$ then

$$
\begin{equation*}
\left|S_{\tau}(\chi ; x)-\chi(x)\right|<\delta \quad \text { for all } \quad x \in \mathbb{R} \backslash E_{\eta} \tag{19}
\end{equation*}
$$

if $\tau>(1 / \eta) T_{0}(\delta)$.
For $x \geqslant A>1$

$$
\left|S_{\tau}(\chi ; x)-\chi(x)\right|=\left|S_{\tau}(\chi ; x)\right|=\left|\frac{1}{\pi} \int_{\tau(x-1)}^{\tau x} \frac{\sin t}{t} d t\right|<\frac{1}{\pi(x-1)}
$$

and so for given $\varepsilon>0$

$$
\begin{equation*}
\int_{A}^{\infty}\left|S_{\tau}(\chi ; x)-\chi(x)\right|^{p} d x<\frac{\varepsilon}{4} \quad \text { if } \quad A \geqslant A_{0}(\varepsilon) \tag{20}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\int_{-\infty}^{-A}\left|S_{\tau}(\chi ; x)-\chi(x)\right|^{p} d x<\frac{\varepsilon}{4} \quad \text { if } \quad A \geqslant A_{0}(\varepsilon) \tag{21}
\end{equation*}
$$

Now let A be any fixed arbitrary number $\geqslant \max \left\{1+\eta, A_{0}(\varepsilon)\right\}$. Then

$$
\begin{equation*}
\int_{-x}^{\infty}\left|S_{\tau}(\chi ; x)-\chi(x)\right|^{p} d x<\int_{-A}^{A}\left|S_{\tau}(\chi ; x)-\chi(x)\right|^{p} d x+\frac{\varepsilon}{2} \tag{22}
\end{equation*}
$$

Next we write

$$
\int_{-A}^{A}\left|S_{\tau}(\chi ; x)-\chi(x)\right|^{p} d x=\left(\int_{E_{\eta}}+\int_{[--4, A] E_{\eta}}\right)\left|S_{+}(\chi ; x)-\chi(x)\right|^{p} d x
$$

From (17) it follows that $\left|S_{\tau}(\chi ; x)\right| \leqslant 1+4 / \pi^{2}$ for all $x \in \mathbb{R}$ and all $\tau>0$. Consequently

$$
\begin{equation*}
\int_{E_{\eta}}\left|S_{i}(\chi ; x)-\chi(x)\right|^{p} d x \leqslant\left(2+\frac{4}{\pi^{2}}\right)^{p} 4 \eta<\frac{\varepsilon}{4} \quad \text { if } \quad \eta<\frac{\varepsilon}{16}\left(\frac{\pi^{2}}{4+2 \pi^{2}}\right)^{p} \tag{23}
\end{equation*}
$$

We choose an $\eta<(\varepsilon / 16)\left(\pi^{2} /\left(4+2 \pi^{2}\right)\right)^{\rho}$ and use (19) to conclude that

$$
\begin{equation*}
\int_{[-A, A] \cdot E_{r}}\left|S_{\tau}(\chi ; x)-\chi(x)\right|^{p} d x<2 \delta^{p} A<\frac{\varepsilon}{4} \tag{24}
\end{equation*}
$$

if $\delta<(\varepsilon / 8 A)^{1 ; p}$ and $\tau>(1 / \eta) T_{0}(\delta)$. The estimates (22)-(24) together show that (16) holds for the characteristic function of [0,1]. The resuit easily extends to the characteristic function of any finite interval and indeed 0 any step function with compact support.

Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$ belonging to $L^{p}(\mathbb{R})$ for some $p>1$ and an arbitrary constant $\varepsilon_{1}>0$ we can find a step function Ω with compact support such that

$$
\left(\int_{-\infty}^{\infty}|f(x)-\Omega(x)|^{p} d x\right)^{1 \cdot p}<\varepsilon_{1}
$$

Further, there exists $\tau_{1}\left(\varepsilon_{1}\right)>0$ such that for all $\tau>\tau_{1}\left(\varepsilon_{1}\right)$

$$
\left(\int_{-\infty}^{\infty} S_{\tau}(\Omega ; x)-\left.\Omega(x)\right|^{p} d x\right)^{1 ; p}<\varepsilon_{1}
$$

Hence, in view of Lemma 5,

$$
\begin{aligned}
& \left(\int_{-\infty}^{\infty}\left|S_{\tau}(f ; x)-f(x)\right|^{p} d x\right)^{1 / p} \\
& \quad \leqslant \\
& \quad\left(K_{p}+1\right)\left(\int_{-\infty}^{\infty}|f(x)-\Omega(x)|^{p} d x\right)^{1 / p} \\
& \quad+\left(\int_{-\infty}^{\infty}\left|S_{\tau}(\Omega ; x)-\Omega(x)\right|^{p} d x\right)^{1 / p} \\
& \quad<\left(K_{p}+2\right) \varepsilon_{1}
\end{aligned}
$$

if $\tau>\tau_{1}\left(\varepsilon_{1}\right)$. Since ε_{1} is arbitrary this proves Lemma 9 for functions which assume only real values. But this is a restriction which can obviously be dropped.

Remark. Lemma 9 seems to us to be a result of independent interest.
The next lemma plays a crucial role in our argument.
Lemma 10. Let $p>1$. If f is an entire function of exponential type τ belonging to \mathfrak{F}^{p}, then

$$
\begin{equation*}
\left(\int_{-\infty}^{\infty}|f(x)|^{p} d x\right)^{1 / p} \leqslant B_{p}\left(\frac{\pi}{\tau} \sum_{k=-\infty}^{\infty}\left|f\left(\frac{k \pi}{\tau}\right)\right|^{p}\right)^{1 / p} \tag{25}
\end{equation*}
$$

where B_{p} depends on p only.
We deduce it from the following result of Marcinkiewicz [10, Theorem 10], using an approximation method developped by B. M. Lewitan [9], N. I. Akhiezer and V. A. Marchenko (see [14, Sect. 4.10.3]), and L. Hörmander [8].

Lemma 11. If t_{N} is a trigonometric polynomial of degree at most N and $1<p<\infty$, then

$$
\int_{-\pi}^{\pi}\left|t_{N}(x)\right|^{p} d x \leqslant C_{p}^{\prime} \frac{2 \pi}{2 N+1} \sum_{v=-N}^{N}\left|t_{N}\left(\frac{2 v \pi}{2 N+1}\right)\right|^{p},
$$

where C_{p}^{\prime} depends on p only.
It is desirable to recall certain facts from [8]. If $\varphi(x):=((\sin \pi x) / \pi x)^{2}$ then for $f \in E^{\tau}$ and $h>0$ the function

$$
\begin{equation*}
f_{h}(x):=\sum_{v=-\infty}^{\infty} \varphi(h x+v) f\left(x+\frac{v}{h}\right) \tag{26}
\end{equation*}
$$

is continuous and periodic with period $1 / h$. Its Fourier coefficients

$$
c_{v}(h):=h \int_{-1 ; 2 h}^{1 ; 2 h} f_{h}(x) e^{-2 \pi i v h x} d x
$$

vanish if $|v|>[\tau / 2 \pi h]+1$, i.e., $f_{h}(x)$ is of the form

$$
f_{h}(x)=\sum_{v=-N}^{N} a_{v} e^{2 \pi i s h x}, \quad\left(N:=\left[\frac{\tau}{2 \pi h}\right]+1\right)
$$

Besides, $f_{h}(z) \rightarrow f(z)$ as $h \rightarrow 0$, the convergence being uniform on ali compact subsets of the complex plane.

We shall also need the following property of f_{h} proved in [5, Lemma 3].

Lemma 12. If $f \in \mathfrak{F}^{p}(\delta), p>1$, then there exists a constant C such that

$$
\left|f_{h}(x)\right|^{p}<C|x|^{-1-p \delta} \quad \text { for } \quad 0<|x|<\frac{1}{2 h}
$$

Proof of Lemma 10. Let h be of form $\tau / 2 \pi(N-1)$ where $N-i \in \mathbb{N}$. Then $f_{h}(x / 2 \pi h)$ is a trigonometric polynomial of degree at most N and so by Lemma 11

$$
\int_{-\pi}^{\pi}\left|f_{h}\left(\frac{x}{2 \pi h}\right)\right|^{p} d x \leqslant C_{p}^{\prime} \frac{2 \pi}{2 N+1} \sum_{v=-N}^{N}\left|f_{h}\left(\frac{v}{\{2 N+1\} h}\right)\right|^{p}
$$

i.e.,

$$
\int_{-1 \cdot 2 h}^{12 h}\left|f_{h}(x)\right|^{p} d x \leqslant C_{p}^{\prime} \frac{1}{(2 N+1) h} \sum_{v=-N^{\prime}}^{v}\left|f_{h}\left(\frac{v}{(2 N+1) h}\right)\right|^{p} .
$$

Given $\varepsilon>0$ there exists $L>0$ such that

$$
\int_{-\infty}^{\infty}|f(x)|^{p} d x<\int_{-L}^{L}|f(x)|^{p} d x+\varepsilon .
$$

Since $f_{h}(x) \rightarrow f(x)$ uniformly on $[-L, L]$ as $h \rightarrow 0$ we can find $h_{\varepsilon}>0$ with

$$
\int_{-L}^{L}|f(x)|^{p} d x<\int_{-L}^{L}\left|f_{h}(x)\right|^{p} d x+\varepsilon \quad \text { for } \quad 0<h<h_{\varepsilon}
$$

Hence for $0<h<\min \left\{h_{\varepsilon}, 1 / 2 L\right\}$ we have

$$
\begin{align*}
\int_{-\infty}^{\infty}|f(x)|^{p} d x & <\int_{-1 / 2 h}^{1: 2 h}\left|f_{h}(x)\right|^{p} d x+2 \varepsilon \\
& \leqslant C_{p}^{\prime} \frac{1}{(2 N+1) h} \sum_{v=-N}^{N}\left|f_{h}\left(\frac{v}{(2 N+1) h}\right)\right|^{p}+2 \varepsilon \\
& <C_{p}^{\prime} \frac{\pi}{\tau} \sum_{v=-N}^{N}\left|f_{h}\left(\frac{v \pi}{\tau+3 \pi h}\right)\right|^{p}+2 \varepsilon . \tag{28}
\end{align*}
$$

In view of Lemma 12 , there exist an integer $n_{2}=n_{2}(\varepsilon)$ and $h_{\varepsilon}^{\prime}>0$ such that

$$
\begin{align*}
\sum_{n_{2}<|\nu| \leqslant N}\left|f_{h}\left(\frac{v \pi}{\tau+3 \pi h}\right)\right|^{p} & <2 C\left(\frac{\tau+3 \pi h}{\pi}\right)^{1+p \dot{\delta}} \sum_{v=n_{2}+1}^{\infty} v^{-1-p \delta} \\
& <\frac{2 C}{p \delta}\left(\frac{\tau+3 \pi h}{\pi}\right)^{1+p \delta} n_{2}^{-p \delta} \\
& <\frac{2 C}{p \delta}\left(\frac{\tau+3 \pi h}{\pi}\right)^{1+p \delta} n_{2}^{-p \delta} \\
& <\frac{\varepsilon \tau}{\pi C_{p}^{\prime}} \quad \text { if } \quad 0<h<h_{\varepsilon}^{\prime} \tag{29}
\end{align*}
$$

Further, since f, f_{h} are continuous and $\lim _{h \rightarrow 0} f_{h}=f$ uniformly on compact subsets it follows from

$$
\begin{aligned}
\mid \sum_{|\nu| \leqslant n_{2}} & \left.\left\{\left|f_{h}\left(\frac{v \pi}{\tau+3 \pi h}\right)\right|^{p}-\left|f\left(\frac{v \pi}{\tau}\right)\right|^{p}\right\} \right\rvert\, \\
\leqslant & \sum_{|\nu| \leqslant n_{2}}\left\{\left|f_{h}\left(\frac{v \pi}{\tau+3 \pi h}\right)\right|^{p}-\left|f\left(\frac{v \pi}{\tau+3 \pi h}\right)\right|^{p}\right. \\
& \left.+\left|f\left(\frac{v \pi}{\tau+3 \pi h}\right)\right|^{p}-\left|f\left(\frac{v \pi}{\tau}\right)\right|^{p}\right\}
\end{aligned}
$$

that

$$
\begin{equation*}
\sum_{|\nu| \leqslant n_{2}}\left|f_{h}\left(\frac{v \pi}{\tau+3 \pi h}\right)\right|^{p}<\sum_{|\nu| \leqslant n_{2}}\left|f\left(\frac{v \pi}{\tau}\right)\right|^{p}+\frac{2 \varepsilon \tau}{\pi C_{p}^{\prime}} \tag{30}
\end{equation*}
$$

if h is sufficiently small. Inequality (25) is an obvious consequence of (28), (29), and (30).

Finally, we need
Lemma 13. Let $p>1$. If $f \in \mathfrak{F}^{p} \cap \mathfrak{R}$, then

$$
\lim _{\sigma \rightarrow x} \frac{\pi}{\sigma} \sum_{k=-x}^{\infty}\left|f\left(\frac{k \pi}{\sigma}\right)\right|^{p}=\int_{-\infty}^{\infty}|f(x)|^{p} d x
$$

Proof. Let

$$
\begin{equation*}
|f(x)|<\frac{C}{(|x|+1)^{1 / p+\delta}} \quad \text { for all } \quad x \in \mathbb{R} . \tag{31}
\end{equation*}
$$

Given $\varepsilon>0$ we choose X_{ε} in $\left[\left(6 C^{p} / \delta p \varepsilon\right)^{1: \delta p}, \infty\right)$ large enough to have

$$
\begin{equation*}
\left.\left|\int_{-X_{\varepsilon}}^{X_{\varepsilon}}\right| f(x)\right|^{p} d x-\int_{-x}^{\infty}|f(x)|^{p} d x \left\lvert\,<\frac{\varepsilon}{3} .\right. \tag{32}
\end{equation*}
$$

If $j=j(\sigma)$ is the largest integer such that $j \pi / \sigma \leqslant X_{\varepsilon}$, then

$$
\begin{align*}
\frac{\pi}{\sigma} \sum_{k=j+2}^{\infty}\left|f\left(\frac{k \pi}{\sigma}\right)\right|^{p} & <C^{p} \frac{\pi}{\sigma} \sum_{k=j+2}^{\infty} 1 /\left(\frac{k \pi}{\sigma}\right)^{1+\delta p} \\
& <C^{p}\left(\frac{\sigma}{\pi}\right)^{\delta p} \int_{j+1}^{\infty} \frac{1}{x^{1+\delta p}} d x \\
& =\frac{C^{p}}{\delta p}\left(\frac{\sigma}{(j+1) \pi}\right)^{\delta p} \\
& <\frac{\varepsilon}{6} \tag{33}
\end{align*}
$$

since $(\sigma /(j+1) \pi)^{\delta p}<\left(1 / X_{\varepsilon}\right)^{\delta p}<\delta p \varepsilon / 6 C^{p}$. Similarly

$$
\begin{equation*}
\frac{\pi}{\sigma} \sum_{k=-\infty}^{-j-2}\left|f\left(\frac{k \pi}{\sigma}\right)\right|^{p}<\frac{\varepsilon}{6} \tag{34}
\end{equation*}
$$

The property (31), the assumption on the size of X_{ε}, and the fact that $|f| \in \mathfrak{M}$ together imply

$$
\begin{equation*}
\left.\left.\left|\frac{\pi}{\sigma} \sum_{k=-j-1}^{j+1}\right| f\left(\frac{k \pi}{\sigma}\right)\right|^{p}-\int_{-x_{E}}^{x_{\varepsilon}}|f(x)|^{p} d x \right\rvert\,<\frac{\varepsilon}{3} \tag{35}
\end{equation*}
$$

for all large σ. The desired result follows from (32)-(35).

3. Proof of Theorem 1

Let $\sigma>0$ and consider $f_{\sigma}^{*} \equiv f-S_{\sigma}(f ; \cdot)$. If $\tau \geqslant \sigma$ then by Lemma 8

$$
L_{\tau}(f ; \cdot)=L_{\tau}\left(f_{\sigma}^{*} ; \cdot\right)+L_{\tau}\left(S_{\sigma}(f ; \cdot) ; \cdot\right)=L_{\tau}\left(f_{\sigma}^{*} ; \cdot\right)+S_{\sigma}(f ; \cdot),
$$

whence

$$
f-L_{\tau}(f ; \cdot)=f_{\sigma}^{*}+S_{\sigma}(f ; \cdot)-L_{\tau}\left(f_{\sigma}^{*} ; \cdot\right)-S_{\sigma}(f ; \cdot)=f_{\sigma}^{*}-L_{\tau}\left(f_{\sigma}^{*} ; \cdot\right) .
$$

By Lemma 7, f_{σ}^{*} belongs to \mathfrak{F}^{p} and by Lemma 3, $L_{\tau}\left(f_{\sigma}^{*} ; \cdot\right) \in E^{\tau} \cap \mathfrak{F}^{p}$. So using Lemma 10 we get

$$
\left\|f-L_{\tau}(f ; \cdot)\right\|_{p} \leqslant\left\|f_{\sigma}^{*}\right\|_{p}+B_{p}\left(\frac{\pi}{\tau} \sum_{k=-\infty}^{\infty}\left|f_{\sigma}^{*}\left(\frac{k \pi}{\tau}\right)\right|^{p}\right)^{1 / p} .
$$

Given $\varepsilon>0$ we can, in view of Lemma 9, choose σ large enough to have

$$
\left\|f_{\sigma}^{*}\right\|_{p}<\frac{\varepsilon}{2} .
$$

Since f_{σ}^{*} belongs to \mathfrak{R} too, we can then, by virtue of Lemma 13 , find $\tau_{0} \geqslant \sigma$ such that

$$
\left(\frac{\pi}{\tau} \sum_{k=-\infty}^{\infty}\left|f_{\sigma}^{*}\left(\frac{k \pi}{\tau}\right)\right|^{p}\right)^{1 ; p}<\frac{\varepsilon}{2 B_{p}} \quad \text { for } \quad \tau \geqslant \tau_{0}
$$

Thus $\| f-\left.L_{\tau}(f ; \cdot)\right|_{p}<\varepsilon$ for all large τ, i.e., Theorem 1 holds.

References

1. S. N. Bernstein, Sur la meilleure approximation sur tout l'axe réel des fonctions continues par des fonctions entières de degré fini, I, C.R. Acad. Sci. URSS (N.S.) 51 (1946), 331-334.
2. R. P. Boas, Jr., "Entire Functions," Academic Press, New York, 1954.
3. P. L. Butzer, The Shannon sampling theorem and some of its generalizations. An overview, in "Constructive Function Theory '81," pp. 258-273, Bulgarian Acad. Sci., Sofia, 1983.
4. T. Carleman, Sur un théorème de Weierstrass, Ark. Mat. Astron. Fys. 20B, No. 4 (1927).
5. C. Frappier and Q. I. Rahman, Une formule de quadrature pour les fonctions entières de type exponentiel, Ann. Sci. Math. Québec 10 (1986), 17-26.
6. R. Gervais. Q. I. Rahman, and G. Schmeisser, Simultaneous interpolation and approximation, in "Polynomial and Spline Approximation (Proc. NATO Adv. Study Inst., Univ. Calgary, Calgary, Alta, 1978)," pp. 203-223, NATO Adv. Study Inst. Ser., Ser. C: Math. and Phys. Sci., Vol. 49, Reidel, Dordrecht, 1979.
7. G. GrÜnwald, Uber Divergenzerscheinungen der Lagrangeschen Interpolationspolynome stetiger Funktionen, Ann. of Math. 37 (1936), 908-918.
8. L. Hörmander, Some inequalities for functions of exponential type, Math. Scand. 3 (1955), 21-27.
9. B. M. Lewitan, Uber eine Verallgemeinerung der Ungleichungen von S. N. Bernsteir und H. Bohr, Dokl. Akad. Nauk SSSR 15 (1937), 169-172.
10. J. Marcinkiewicz, Sur l'interpolation (I), Studia Math. 6 (1936). 1-17.
11. J. Marcinkiewicz, Sur la divergence des polynômes dinterpolation. Acta zitfer. Sci. Szeged 8 (1937), 131-135.
12. M. Plancherel and G. Pólya, Fonctions entières et intégrales de Fourier multigles. Comment. Math. Helv. 9 (1937), 224-248; 10 (1938), 110-163.
13. W. Rudin, "Real and Complex Analysis," McGraw-Hill, New York, 1966.
14. A. F. Timan, "Theory of Approximation of Functions of a Real Yariable," New York. Macmillan, 1963. [Translated from Russian]

[^0]: * This author was partially supported by the Hungarian National Foundation for Scientific Research Grant 1801.

