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Let f:R—C be a continuous, 2n-periodic function and for each neN let
t,(f;-) denote the trigonometric polynomial of degree < interpolating f in the
points 2kn/(2n+1) (k=0, £1, .., +n). It was shown by J. Marcinkiewicz that
lim, _, . {271 /() —1,(f;0)|?d0 =0 for every p>0. We consider Lagrange inter-
polation of non-periodic functions by entire functions of exponential type 1 >0 in
the points km/t (k=0, +1, £2,..) and obtain a result analogous to that of
Marcinkiewicz. € 1992 Academic Press, Inc.

1. INTRODUCTION

For each ne N let
2kn

mk :=2n+ 1

k=0, +1, .., +n)

and denote by ¢,(f; -) the trigonometric interpolatory polynomial of degree
not exceeding n with 7,(/;0,,)=7(0, ). It was shown by Marcinkiewicz
[10] that if f: R — C is a continuous, 2n-periodic function, then for every

p>0
21
1imf 17(0)—1,(f; )| d8 =0.
n— oo v

* This author was partially supported by the Hungarian National Foundation for Scientific

Research Grant 1801.

302

0021-9045/92 $5.00

Copyright € 1992 by Academic Press, Inc.
Al rights of reproduction in any form reserved.



INTERPOLATION AND L? CONVERGENCE 303

The interest of this resuit lies in the fact that lim sup,, _, ,, {7,{f; 8)] = = for
every 8 if the continuous and 2n-periodic function f is suitably chosen {see
L7, ti]).

We consider Lagrange interpolation of non-periodic functions by entire
functions of exponential type ©> 0 in the peints

k
xr,k:zTﬂ: (k=09 i‘l, iz’ )

and obtain a result analogous to that of Marcinkiewicz. In order to place
our result in perspective we recall that every continuous function /' R—C
can be approximated arbitrarily closely on R by entire functions [4]. It
was shown by Bernstein [ 1] that if fis continuous and bounded on R and
E" is the class of all entire functions of exponential type t bounded on R
then

Af) = ian sup | f{x)— F{x}|

FeE™ yem

tends to zero as T — oo if and only if f is uniformly continuous. To f we
associate

Lt(f;Z):= Z f(xr.k}gr.k(z) {2}

k=—x

where for k=0, +1, +2, ...

sin t(z — x, ;)

r(z_xr,k) ‘/3\
(S

gr,k(z) =
1 if 2= X ks

and investigate if it converges to f (in one norm or the other) as 1 — . We
are able to show that for every p> 1

\ P

=Lfll=([ 7 - Lol ds) 50w s @)

if for some 6>0

1 .
f(x)=0<W) (xe R) i\:}}

We wish to point out that sup, _g |f{x}— L.(f; x)! may not tend to
zero as t — oo, if f satisfies (5). Indeed, if X denotes the Banach space of
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all continuous functions f:R— C which vanish outside [0, 1] then
f— L.(f;-) defines a bounded linear transformation A, from X to the
normed linear space Y of all continuous functions ¢ on [—1, 1] with
[lel] :==max _; <., l@(x)|. Using [7/n] to denote the integral part of 7/
we see that for all large 7
i
gr,k (21)

ie., sup, ||4.l| = . Hence by the Banach-Steinhaus theorem [13, p. 98]
there exists a function f* € X and so one satisfying (5) such that

max |f*(x)—L.(f* x

—l<x<1

[t/n]

RIS

k=1

2[r’n]
4 z Zk—l

k=1

-—logr

does not remain bounded as T — oo. This idea is essentially contained in [6,
pp- 211-2127]; there is a slight difference nevertheless.

DerintTION 1. Given p>1, we denote by () the set of all
measurable functions f: R — C satisfying (5) for some 6 >0 and by &” the
union |J;- ¢ §7(3). Clearly & < L?(R).

If fe &”(6) then fe §?(y) for every y <d. So we may and indeed will
assume 0 <o < 1—1/p. It is clear that if fe §?, then

G

DermniTioN 2. We denote by R the set of all functions f: R — C which
are Riemann integrable on every finite interval.

oC

)

k= —x

< o0. (6)

With this we are ready to state our analogue of Marcinkiewicz’s result
mentioned above.

THEOREM 1. Let p> 1. Then (4) holds if fe F" N R.

Theorem 1 is related to the well-known sampling theorem which plays
an important role in communication, control theory, and data processing.
In the language of electrical engineers the difference f— L (f;-) is called
the aliasing error and a function f'e C(R) with compact support is referred
to as a duration limited signal (for these and other terms used by them in
this connection see [3] and some of the papers quoted therein). Since a
duration limited signal f trivially satisfies condition (5), Theorem 1 applies
and so the following corollary holds.
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CoroLLARY 1. For a duration limited Riemann integrable ( finite energy)
signal the L? norm of aliasing error can be made arbitrarily small.

For a uniform bound of the aliasing error additional assumptions are
needed and are usually stated as conditions on the spectrum,.

2. AUXILIARY RESULTS AND PREPARATORY LEMMAS

The entire functions g, , introduced in (3) are of exponential type 7 and
belong to L#(R) for every p > 1. In particular, thev belong to the class £7
and further

gr./(xr.k) = 5j.k-

Now we collect some known facts from the theory of entire functions of
exponential type and prove some preliminary results.
Lemma 1 [12 or 2, Theorem 6.7.1]. If g is an enitre function of
exponential type T and jfx lg(x)}|? dx <0, p>0, then
P Lp

k-] 1'p
{ Iﬂx+WN“h> st(J 1guﬂhﬁ> | )

— o

Moreover, g(x)— 0 as x— £ oo

This is analogous to the well-known fact that if fe £, then

sup | f(x+iy)i et sup [ f(x).

— 20 < ¥ < oo — oL XA

LEMMA 2 [12 or 2, Theorem 6.7.15). Under the conditions of Lemma 1

A

p\1lp / ‘-30 \i )4

<4 lg(x}|? dx 8}
- ¥ ) oA el ax) (®)
where A, depends on p only.

"o

The next lemma contains some useful information about the function
L. {f; -} associated with an fe §*.

LEMMA 3. Let p> 1. If fe &P(0) then (1) L (f;-)eE and ()L {f; i€
F2(y) for each ye (0, 5).

Proof. (i) ForzeC, {eC let

. sin t{z—{)

ho(z, ) =

{z—{)
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If z=x+1y is fixed, then as a function of {, 4.z, () is entire and of
exponential type 1 belonging to LY(R) for all ¢> 1. Hence if ¢ > 1, then by
Lemma 1

sin £[?

£
&

sin 7(
(& +iy)

q 1 x
Z patlyl
dE<—e |

— X

[" iz enra={" e

—x Y—w

which in conjunction with Lemma 2 gives

% km\|? 1/ 1 p»
(Z (T <G

This inequality allows us to conclude that if g=p/(p—1) then for N,
N,eZ, N;<N,,

£ /(2 -2)
(3PN (b
(5 )l ) e

=N
Hence, in view of (6), the series > ;_ _.. f(kn/t)h (z, kn/t) converges
uniformly on all compact subsets of C and so its sum, which is L. (f;z)
(because A.(z, kn/t)=g. ,(z)), defines an entire function. Further

km\ |7\ 7 L=
(Z)) G
which implies that L (f;-) is of exponential type t and is bounded on the
real axis.

(i1)) Let xe[jn/t, (j+1)n/t), where jeZ. Since |g..(x) <1 for
x e R we readily obtain

sin ¢4

<

liq
df) et (9)

sin &

G

o0

IL(f: 2) <( >

k= —

sin £[9

x
)

1/q
d§> e (10)

2
gk S——7—— for k=j,j+1
lj—kl+1

Now note that |x —x_ ] is bounded below by (j—k)n/t if £ <j—1 and by
(k—j—l)n/tif k=j+2. As such, g, (x)| <2/(Jj—k|+ 1) also for k #],
j+ 1L ie,

2
,gr,k(x)lélj—._:m—l for all k. (11)
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By assumption there exists a constant C, such that |fix}i<
C/{Ix)+ 17+ for all xe R. Hence for large positive x

1 T
IL.(f; r)|<°Cl{}—+—l+2( )

(% et 5 )

Zl(] k+0)ktrre s & (k—j+ Dk'7ee

I'p+d

In order to estimate the two sums on the right we break them into two
parts each, thus obtaining four sums. In the first k& varies from | to [ /27,
in the second from [j/2]+1 to j, in the third from j+ 1 t0 2j— 1, and in
the fourth from 2j to oc. We then readily see that for some constant C,

-

1 1 1 | 3
IL.(f;x)| < Cs (5+W+11”*01 )<C7[1 ~log)
Hence the desired result holds for positive x. But then it must also hold for
negative x.

Lemma 3 helps us to prove in particular

Lemma 4. The transformation f— L ([, -} reproduces entire functions of
exponential type © belonging to §”.

Proof. U o(z):=L.(f;2)—f(z) then Y(z) mz/t) is an entire
function which, in view of (10), satisfies

W(z)l =0(e™),  ceC.

Since ¥(z)=0 for z=0, £ 1, £2,.. we can use a result of Pélya 72,
Corollary 9.4.27 to conclude that Y(z)=csin zz. But y(x)—»0as x— +
since f and L,(f; ) belong to §7; as such, the constant ¢ must be zero.
Hence /(z) =0 which implies L (f; z)=f(z)

Given f: R — C and 1> 0, consider the integral

1 p= sin 7{z ~ )

Sfizy==| fly—————di
MTY_ o z—1
which certainly exists if fe L?(R) for some p> 1. For real z we may also
write

1= sin 77

S(fin==| fi+n

— 0

dr.
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The function S.(f;-) has many interesting properties. For example, if
fe L?(R) for some p>1 then S.(f;z) is an entire function of exponential
type T and ||S.(f;-)—f1|,— 0 as 1 - oo. Lemmas 5-9 contain facts about
S.(f; -) which we need for the proof of our theorem on the L? convergence

of L.(f;-).
From Holder’s inequality follows

LeEmMmA 5. If fe L?(R) for some p> 1, then

HSS M<K LA, (12)
where K, depends on p only.

Next we prove

LEMMA 6. If fe L?(R) for some p>1, then S_(f;-)e E".

Proof. The entire function g(z) := (sin 7(z — 1))/(z — t) belongs to L(R)
for every ¢ > 1 and so for g=p/(p—1). Since it is also of exponential type
7, Lemma 1 implies

ES) i/q » 30
(f |g(x+iy)|"dx> Le V! <J

— —

1/q
8(OI? dx)
and therefore
1
S.(fix+ i<z ]
m

=0 (e

This shows that S.(f; -) is of exponential type 7; that it is entire is obvious.

“rwra) ([T jstoras) e

LemMa 7. If fe §” then S.(f;-)e G’

Proof. Throughout this proof C will denote a positive constant not
necessarily the same at each occurrance. We assume, as we may, that
fe&?(2e), where e < (p—1)/2p*. Let x be large and positive. In order to
estimate S, (f; x) we express it as the sum of three integrals,

—2x —x/2 sl 1 sin 7t
sinn=([ +] +j LD S Ly Sy S S
—© —2x —x2) T t

If te(—o0, —2x] then t<x+t<1t/2 and so |f(x+1)| < C/(|t] +2)"P*2%.
This gives

) C C
|[1[<Lx t1/’p+2s+1dt<xl/p+26' (13)
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The assumption on ¢ implies that p, :=p—pe>1 So if g, :=p,/{p,— 1}
then by Holder’s inequality

Lpy v

l;-—.\"Z —x2
<o (7 o) T

—2x

<C (J‘Zx ! a’u\)ml (‘:‘ ! d,\\)lm‘

2 (lx—ul DI rrEn

Again by our assumption on &

1 )
<;+28) pi=1+pe—2pe>1+¢

and so

C C
|12I<Y—<—— {14)

1 p X i'p+e’
Finally, with x4+ =1y,

1 isin T(u — x)|
+ D7 TE (1) ju—x|

hi<C J T

C * |sint(u—x)|

“Grols a

_ C b pxrtoee N\ fsint{u—x)|

—(x+2)1'vp+6(\‘]x'2 +Jx—l+"|x +J,v+l> EU—XP+E d“
C

xl,p+s

|u~x|1+£

< {(i3)

From (13}~(15) it follows that |S,(f; x)| < C/|x|'? "¢ for large and positive
x. Due to obvious summetry, the same estimate must also hold as
x — —oc. In particular S,(f;-) e &”.

Lemma 4, in conjunction with Lemmas 6 and 7, gives

LemMa 8. If fe&? then L (S.(f;- 1 =8.{f;"}

We also need the following

LEMMA 9. Let fe L/(R) for some p> 1. Then

lim

incﬁ
T— X v _

IS (fs x)~f(x)|7 dx=0. 16)
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Proof. We start by proving (16) for the characteristic function y of the
interval [0, 1]. For this we need the easily verifiable facts that

Tsin ¢ n 2
—dr| <<+ - 17
0 [ [, 2 + 4 ( )
for all T and that
Tsin t 7
li —dt=—. 18
Tl—r»ncc 0 1 2 ( )
Simple calculation gives
1 ¢rrsint 1 psil—x)gin ¢
S.(;x)=~— —d —dt.
(2 x) - Jo - fo ;

From (18) it follows that for every d > 0 there exists T,(d) such that

1 ¢Tsin¢ 1 6
Sl Bl P
n-[o ;4 2‘<2

if T> To(6). If y is a fixed number in (0, 1) then for t > (1/4) To(d) both tx
and t(1 — x) are larger than 7,(J) and so

™ sin ¢ ’
!

1S, (7,x)——1|<’ —d_i

1 "f“—-*') sin ¢ 1' .

if xe[#, 1 —x]. Similarly, if x =145 or if x < —y then for t> (1/5) T,(5)

1 ¢='=x)sin ¢t 1
Jo le*§‘<5.

Tlxl gin ¢ 1
i

1
IST(X,XHS’EJO _t—dt_5 +

Thus if E, ;= {x:|x| <n or [x—1| <y} then
IS (6 x)—x(x)l<d  forall xeR\E, (19)

if T>(1/n)To(S).
Forx=zA>1

1 ATX i
ISr(X;x)_X(x)l=|S’(X;x)|:[;J( —1)5111” t‘<7t(’cl—1)

and so for given >0

[T 1Scm - de<y it Az Ag(e) (20)
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Similarly

—A
| CIsdmm—gnrar <t it Az Ao 21)

— L

Now let 4 be any fixed arbitrary number >max {1+, 44{¢}}. Then

= A » ] € n
| ISf(x;x)~x(x)|”dX<[ Sl )i dx+5 o (22)
). I,

Next we write

n A /

I 18 —ptolrax=(]_+] J18.06.20) =) .
— A Ey

[-d4.4] &

From (17) it follows that |S,(y;x)| <1+4/z” for all xeR and all >0
Consequently

- ~ . [ 4N e . e[ w N
“ \ST(X§X)—X(X)l"dx<\2+;{§> 4;g<§1 if ;7<% 4+7‘n2)' {233

We choose an < (g/16)(n%/(4 + 2n?))? and use {19) to conclude that

j 1S, (3 %) — ()2 dx < 2674 <& i24)
[—4,4] & 4

if §<(e/84)" and > (1/4)Ty(6). The estimates (22)-{24) together show
that {16) holds for the characteristic function of [0, 1]. The resuit easily
extends to the characteristic function of any finite interval and indeed o
any step function with compact support.

Given a function /2 R — R belonging to LP(R) for some p>1 and an
arbitrary constant &, >0 we can find a step function & with compact
support such that

\ Lp

<E |f(x)—Q(X)!"dx) <é,.

/

Further, there exists 7,(&;) > 0 such that for all > 1 ,{(¢,}

"0 Lp
(j S.(€; x) — Qx)1” a’x/ <s,.
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Hence, in view of Lemma 5,

(j:} IS.(f:x)— f(x)|? dx)l,'p

s(K,,+1)(J'°°

— o0

+( [ 1s.@: «‘C)—Q(x)l"dx>

If(x)—Q(X)I”dx> |

<(K,+2)s

if > 1,(¢,). Since ¢, is arbitrary this proves Lemma 9 for functions which
assume only real values. But this is a restriction which can obviously be
dropped.

Remark. Lemma 9 seems to us to be a result of independent interest.

The next lemma plays a crucial role in our argument.

LemMa 10. Let p>1. If f is an entire function of exponential tvpe T

belonging to §°, then
km\|7\ "7
(=Z)) 25)

(7 170 as)
where B, depends on p only.

We deduce it from the following result of Marcinkiewicz [10,
Theorem 10], using an approximation method developped by B. M.
Lewitan [9], N. I. Akhiezer and V. A. Marchenko (see [ 14, Sect. 4.10.3]),
and L. Hormander [8].

1/p ¢

i3
SB,,(;A Z

= — %

Lemma 1. If ty is a trigonometric polynomial of degree at most N and
l <p< o, then

I4

(2vn>
2N+ 117

It is desirable to recall certain facts from [8]. If @(x) := ((sin mx)/rx)?
then for fe E* and h >0 the function

b4 N
P
Ll V(X)) dx<C p2N+1 Z

where C, depends on p only.

K«

filx)i= ¥ (p(hx+v)f<x+%) (26)

V= —oC
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is continuous and periodic with period 1/A. Tts Fourier coefficients

f‘h (’x ) e 2rivix d,\'

vanish if |v| > [t/2nh]+ 1, ie., f,{x} is of the form

v , o A\

Y (x) — z a e.’lmv!z.v (f\l .:i 5_{,__ i j
Jh v ) i

Nl f2mh

Besides, f.(z)—f(z) as h—0. the convergence being uniform on ali
compact subsets of the complex plane.
We shall also need the following property of f, proved in {5, Lemma 3.

LemMa 12. If fe §7(0), p> 1, then there exists a constant C such thai

. 1
()P <Clx| 7177 for O0<|x <3 {27

3]
~}

Proof of Lemma 10. Let h be of form 1/2r(N—1) where N—ieN.
Then f,{x/2nh) is a trigonometric polynomial of degree at most & and so
by Lemma 11

= x \|? . 2m Y . 4 v A7
L f"(z_nZ) dYSCP2N+1‘,;N ”’({2N+1;h)
1e.,
Al 2h ' N 3 \lp
p t
J,l, o)l dx < €y Z aN iR

Given &> 0 there exists L > 0 such that

[ e de<] e dre

— X

Since f,{x) — f(x) uniformly on [ — L, L7} as /1 — 0 we can find 4, >0 with

oL
{

; |f(x)|ﬂdx<J'L f(x)|Pdx+e  for O<h<bh,.
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Hence for 0 <h < min{h,, 1/2L} we have

7 <] i ave2s

-0

1 N y 4
<CaNTOR, 2~ ()| +2
Tz X ?
<C’p;v;£ ( +3nh> + 2e. (28)

In view of Lemma 12, there exist an integer #, = n,(¢) and A, > 0 such that

Ve » T4 3mh\'*?» = .
<2C 1o
n<|v|<N fh <T+37Th> < T ) \’:%1—1‘
2C(r+3nh Ltpo 5
< n, P
po T 2
1
2C (r+3nh> +pdn—p5
p() n 2
et .
<— if O<h<hl. (29)
nC

P

Further, since f, f,, are continuous and lim,, , , f, = f uniformly on compact

subsets it follows from
%14 , v\ |?
(5) )

fh (T -:gnh> p_ lf (‘C -:ZTC/’I)

- (%)
Je (r + 3nh) (V”>

VI
I/ <r + 37t/1>
if 4 is sufficiently small. Inequality (25) is an obvious consequence of (28),
(29), and (30).

14

that

7 et
nC,

2

vl <ny

<X

v <ny

(30)
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Finally, we need

LemMa 13. Let p> 1. If fe §" N R, then

G

xc

lim = Y

g — x O-k:

¥4

— X

Proof. Let

C

|f(x) <W forall xeR.

Given &> 0 we choose X, in [(6C?/dpe)"??, o) large enough to have

I

ot

o

o l £
{f(x)|”dx! <-.

If j=j(o) is the largest integer such that jn/o < X, then

km\|? A
f(_f) <CPE Z 1,/(_)
o o

k=j+2 ' NT

: 5

O kwj+2

lol4 - N op
‘$<(f+1>n

L
6

since (o/(j+ 1)7)% < (1/X,)%" < dpe/6C?. Similarly

! (’ﬁ\

¢/

T "i52
- X

k= —x=

4

A
o

The property (31), the assumption on the size of X,, and the fact
| f1 € R together imply

n I km\|? X e
— —_— — ; P - —
5 ) e ad<s

for all large 6. The desired result follows from (32)-{35).

o
[\

o
Lod
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3. PrROOF OF THEOREM 1

Let 6 >0 and consider f* =f— S.(f;-). If t >0 then by Lemma 8
LS5 )=L S )+ LAS,(f5); V=L (f*5-)+S,(f5)
whence
J=L S5 )=fF+S,0f;-) = LfF ) =SS ) =fF = LS5 ).
By Lemma 7, f.¥ belongs to §” and by Lemma 3, L.(f.*;-)e E*n &*. So

using Lemma 10 we get
()"
7\t

Given ¢ >0 we can, in view of Lemma 9, choose ¢ large enough to have

o

7=t <lifiL+ 5 (5 3

k=—oo

&
A <5

Since f,* belongs to R too, we can then, by virtue of Lemma 13, find 1, > ¢

such that
km
L e
(%)

Thus || f—L.(f; )|, <e for all large 7, ie., Theorem 1 holds.

52

Tk=7oo

2B

PN\ Lip P
) < for t>=1,.
P
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